JAWABAN UJI KOMPETENSI KINEMATIKA GERAK LURUS
KELAS : XI IPA 1
KODE : A
- dan (5)
r = (6t2 – 2t – 5)i + (3t2 – 5t + 1)j
- v = dr/dt = (12t – 2)i + (6t – 5)j
t = 1 ® v = 10i + j
v = Ö101 m/s
- a = dv/dt = 12i + 6j
a = Ö180
- dan (6)
a = 4i + 6j
v0 = i +3j
v = v0 + ò a .dt
= (i + 3j) + (4t i + 6t j)
= (4t +1) i + (6t+3)j
= 13i + 21j
v = Ö610 m/s
- dan (7)
r = (4t – 2) i + (2 – 3t) j
- t1 = 2 Þ r1 = 6 i – 4 j m
t2 = 4 Þ r2 = 14 i – 10 j m
vr = {(14 i – 10 j) – (6 i – 4 j)}/2
= 4 i – 3 j m/s
- v = dr/dt = 4 i – 3 j m/s
- dan (8)
r0 = 3 i + 4 j
v = (4t + 3) i + (8t – 6) j
- r = r0 + ò v dt
= (3 i + 4 j) + ò(4t + 3) i + (8t – 6) j dt
= (3 i + 4 j) + (2t2 + 3t) i + (4t2 – 6t) j
= (2t2 + 3t + 3) i + (4t2 – 6t + 4) j
= (2.22 + 3.2 + 3) i + (4.22 – 6.2 + 4) j
= 17 i + 8 j meter
- a = dv/dt = 4 i + 8 j m/s2
KODE B :
- dan (5)
r0 = i + 5 j
v = (6t -2) i + (8 – 2t) j
- a = dv/dt = 6 i – 2j
- r = r0 + ò v dt
= (i + 5j) + ò(6t – 2) i + (8 – 2t) j dt
= (i + 5j) + (3t2 – 2t) i + (8t – t2) j
= (3t2 – 2t + 1) i + (8t – t2 + 5) j
= 2 i + 12 j
- a = dv/dt = 6 i – 2j
- dan (6)
r = (4 – 6t) i + (4 – 2t) j
- t1 = 2 Þ r1 = (4 – 6.2) i + (4 – 2.2) j = - 8 i
t2 = 4 Þ r2 = (4 – 6.4) i + (4 – 2.4) j = - 20 i – 4 j
vr = {(- 20 i – 4 j) – (-8 i)}/2 = - 6 i – 2 j
- v = dr/dt = -6 i – 2 j
- dan (7)
r = (5t2 – 7t + 4) i + (2t2 – 5t – 2) j
- v = dr/dt = 23 i + 7 j
= Ö578 m/s
- a = dv/dt = 10 i + 4 j
a = Ö116 m/s2
- dan (8)
v0 = 5 i + j
a = 7 i + 5 j
v = v0 + ò a . dt
= (5 + 7t) i + (1 + 5t) j
= (5 + 7.2) i + (1 + 5.2) j
= 19 i + 11 j
v = Ö482 m/s
0 Komentar:
Posting Komentar
Berlangganan Posting Komentar [Atom]
<< Beranda